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Marsha J. Berger∗
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NASA Ames, Moffett Field, CA 94035

with an Appendix by Steven R. Allmaras1

We present preliminary development of an approach for simulating steady viscous com-
pressible flow in two space dimensions using a Cartesian cut-cell finite volume method.
We consider laminar and turbulent flow with both low and high cell Reynolds numbers
near the wall. The approach solves the full Navier-Stokes equations in all cells and uses a
wall model to both address the resolution requirements near boundaries and to mitigate
mesh irregularities in cut cells. We present a quadratic wall model for low cell Reynolds
numbers. At high cell Reynolds numbers, the quadratic is replaced with a newly developed
analytic wall model stemming from solution of a limiting form of the Spalart-Allmaras tur-
bulence model which features an explicit evaluation for flow velocity, and exactly matches
characteristics of the SA turbulence model in the field. We develop multigrid operators
which attain convergence rates similar to inviscid multigrid. Investigations focus on pre-
liminary verification and validation of the method. Flows over flat plates and compressible
airfoils show good agreement with both theoretical results and experimental data. Mesh
convergence studies on sub- and transonic airfoil flows show convergence of surface pres-
sures with wall spacings as large as ∼0.1% chord. With the current analytic wall model,
mesh converged skin friction requires near-wall cells two to four times smaller.

I. Introduction

Cartesian embedded-boundary grids have proven extremely useful for inviscid flow simulations around
complex geometries. Their primary strengths include their accuracy, rapid turnaround time and level of

automation. The use of cut cells at the intersection of the grid and the geometry has been well-studied, and
the numerical issues of discretizations, stiffness and convergence for these irregular cells are well understood.

These same issues are less well understood for high Reynolds number flows on cut-cell meshes. Since the
Navier-Stokes equations involve one higher derivative, the numerical issues are more delicate. The literature
shows difficulties extracting smoothly varying quantities such as skin friction due to irregularity of the cut
cells, along with loss of accuracy and numerical stiffness.1–3 In addition, the resolution requirements needed
to compute aerodynamic flows at Reynolds numbers of interest are daunting. The inability of Cartesian
meshes to (easily) refine anisotropically in the wall normal direction is clearly a challenge for these methods.

There are several approaches found in the literature for dealing with the mesh irregularity and resolution
requirements of Cartesian meshes. The most obvious is to avoid cut cells altogether, and use layers of
conformal cells before switching to a background Cartesian mesh.4–6 Some authors accomplish this through
the use of body-fitted grids in the near-wall region and then blending to a background Cartesian grid.
Alternatively one can start with a cut-cell mesh, remove the layers of cells adjacent to the body, and then
drop normals to the body to create the body-aligned mesh layers.7,8 Both methods rely on body-fitted
near-wall layers to avoid the large cell counts associated with isotropically refined Cartesian grids, but give
up the simplicity and robustness of a pure Cartesian approach. An alternate idea is to use the Cartesian
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mesh down to the wall. This can be done using either a finite volume9,10 or finite difference11,12 scheme, or
other integration methods13,14 but all will have to contend with the non-aligned boundary. Some methods
use an immersed boundary15,16 instead of explicitly cutting the cells that intersect geometry. For any of
these approaches to be ultimately practical, some additional technique must be used to alleviate the cell
count problem of isotropic refinement for high Reynolds number flows.

Each of these approaches has benefits and drawbacks. We have chosen to use Cartesian cut cells so that
all mesh faces remain Cartesian, placing emphasis on the ability to automatically generate meshes around
complex configurations. Fully Cartesian approaches preserve the decoupling between the volume mesh and
the surface triangulation. This simplicity is one of the great strengths of embedded-boundary methods and
is key for automation. Using only Cartesian faces also allows optimized numerics within the flow solver.

Recent papers present promising results using wall function or PDE-based wall model approaches to
mitigate the inefficiency of isotropically refined Cartesian meshes in a boundary layer.17–23 We adopt this
same approach within the current work, however, it must be suitably modified for finite volume meshes
with Cartesian cells explicitly cut by the embedded boundary. In this preliminary effort, we model near-wall
behavior with either a simple quadratic representation of the solution (low cell Reynolds numbers) or with an
analytic wall function (high cell Reynolds numbers) as our initial wall model for turbulent flow. While wall
functions are sufficient for this initial exploratory work, ultimately we envision developing a more complete
PDE-based subgrid wall model.

In this paper we lay the groundwork in several steps. We first develop a Navier-Stokes solver for laminar
flows, by developing an accurate discretization for the cut cells and mesh interfaces. This is discussed in
Section II and Appendix A. It entails an understanding of grid irregularity at the cut cells for second-
derivative terms. Of particular importance is the use of a quadratic to compute the values in the cut
cells (for both the solution and its derivatives) needed for the flux computations in laminar flow. This
work builds upon our earlier efforts24,25 where the governing equations are integrated to steady-state using
a second-order cell-centered finite volume scheme. Section II also presents the RANS equations and the
Spalart-Allmaras turbulence model. The coupling of the wall model to the finite volume scheme used in
the turbulent flow computations is an important component. Section III discusses fortification of the basic
multigrid solver for viscous flow. Section IV presents two-dimensional computational examples of both
laminar and turbulent flow, including flat-plate boundary layers on both coordinate-aligned and non-aligned
meshes, and compressible airfoils.

II. Discretization of the Navier-Stokes Equations

In integral form in two space dimensions the compressible Navier-Stokes equations can be written

d
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The shear stresses are

τxx = 2µux − 2/3µ∇ · v
τxy = µ(uy + vx) = τyx (2)
τyy = 2µvy − 2/3µ∇ · v

where the vector ∇q is proportional to the gradient of the temperature ∇q = −k∇T , the Prandtl number

is given by Pr = µcp/k, and µ is computed using Sutherland’s law.26 We take Pr = .72.
We first present the basic finite volume scheme used on the regular Cartesian cells that make up most

of the volume mesh. Only the viscous terms will be discussed, since the inviscid terms have been previously
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described.25 Following that we present the modifications needed for the viscous discretization in the irregular
cells. Of particular importance here will be the method used to compute the gradient at the faces of these
cut cells.

A. Cartesian Cell Discretization

i

ux

i + 1i + ½

uyi
uyi + 1

uxi+1/2 ≈
ui+1 − ui

∆x

uyi+1/2 ≈ 0.5(uyi + uyi+1)

Figure 1. Illustration of stable viscous flux computation at
face between cells i and i + 1.

The discretization of the viscous terms on un-
cut Cartesian cells is straightforward. At the
midpoint of each Cartesian face, the gradient of
both velocity components is needed. Consider
for simplicity an x face. We ensure stability
and accuracy by taking ux ≈ ui+1,j−ui,j

∆x at that
face. This avoids the pitfall of simply averag-
ing the left and right cell-centered gradients (al-
ready computed using second-order central dif-
ferences for the inviscid terms in a second-order
finite volume scheme). This would lead to an
unstable 5-point approximation to the second
derivative with a decoupled stencil. The trans-
verse derivative however, in this case uy at the x face, can stably be taken as the average from the adjacent
cells, uy ≈ .5(uyi,j + uyi+1,j ). This discretization is commonly found in the literature for regular Cartesian
meshes.27,28

At mesh refinement interfaces, a least-squares gradient computation that uses only face neighbors is
linearly exact, and so approximates the solution to second order. We use this gradient to recenter the
solution to compute the fluxes at mesh interfaces in the same way as is done in the cut cells (described next).
Since it is not centered, this difference approximation gives only a first-order accurate approximation to the
derivative at an interface. The transverse component of the gradient is still taken to be an average of the
transverse gradients on either side of the face, this time weighted by distance from the face.

B. Cut-Cell Discretization for Navier-Stokes

A

B
C

D

Figure 2. Recentering of the solution from cell centroids
(A and C) to points (B and D) on the line perpendicular
to the midpoint of the cut-cell edge. A simple difference
(B-D)/∆x approximates the derivative.

At cut faces, a recentering procedure illustrated
in Fig. 2 is used to reconstruct the velocity
from the cell centroid to the perpendicular line
through the face centroid. Appendix A presents
an accuracy study of the discretization with
recentering compared with two other popular
methods using a Poisson equation model prob-
lem. This study shows second-order accuracy in
both the L1 and max norms, which is on a par
with the best of these methods.

When the face lies between two cut cells,
both cells follow this procedure and the deriva-
tive can be computed. If one of the cells is un-
cut, the face itself must not be cut, and only one
cut cell needs to recenter the solution, since the
full Cartesian cell centroid and the face centroid
must already be aligned. Pressure at the wall is
obtained by simple reconstruction from the cell centroid to the surface centroid of the wall in each cut cell.

Mesh irregularity through the cut cells introduces non-smooth truncation errors along walls. Accordingly,
special procedures must be devised for accurate reconstructions of velocity derivatives at wall boundaries. For
meshes with low cell Reynolds numbers at the wall, we obtain accuracy by using a higher-order (quadratic)
polynomial for reconstruction of the data in the wall-normal direction. In RANS simulations (discussed
later) with high cell Reynolds numbers, the quadratic is replaced by an appropriate wall model.
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1. Mesh Irregularity at the Cut Cells
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Figure 3. Noise in the skin friction profile along surface of the
plate when using piecewise linear gradients in the cut cells, as in
the literature.1–3

Mesh irregularity adjacent to geometric
boundaries has been a major challenge for
an accurate discretization of the viscous
terms in the Navier-Stokes equations us-
ing Cartesian mesh methods. Since the
viscous terms include derivative quanti-
ties, irregularity affects both the com-
puted viscous fluxes and the skin friction
computed at the wall. Accurate skin fric-
tion, in particular, has been a challenge,
and has stymied many viscous Cartesian
efforts. Figure 3 displays the problem
and is representative of many of the re-
sults found in the literature.1–3 This fig-
ure shows the skin friction Cf along a
ReL = 5000 flat plate rotated 15◦ to the
Cartesian mesh at a free stream Mach
number of 0.5. The magenta line indicates the Blasius solution, and the symbols represent the data ex-
tracted from cut cells along the plate’s surface. Skin friction data using the viscous discretization method
with linear reconstruction outlined in the preceding section have been colored by number of neighbors. Like
similar examples in the literature, the skin friction data appear quite noisy around a mean which roughly
follows the Blasius result for Cf . In this particular example, however, the sorting of data by number of
face neighbors reveals a stratification of the noise with cell type. On a 15◦ flat plate, 2-neighbor cells are
always the smallest cut cells while 4-neighbor cells are always the largest. As a result, the patterns of the
symbols associated with 2-, 3- and 4-neighbor cells graphically illustrate the link between mesh and stencil
irregularity and skin friction noise.

Figure 4 reveals the source of this irregularity. The figure shows a non-aligned body with cut cells a, b, c
and d. To the right, we sketch a nonlinear profile U(y) marked with the cell-centroid data for cells a through
d and slopes U �(a) through U �(d). With a non-linear profile, the slopes at a–d are obviously not (dU/dy)wall,
and the “noise” staircasing through the profile in Fig. 3 is not surprising. In the skin friction plot, the
cell-centroid gradients are being projected along the wall, even though the centroids in this non-uniform
region are at different distances from the wall.

This observation suggests an obvious path forward: given cell centroid data at the first and second
cells off the wall, reconstruct a quadratic function through these data, and evaluate the wall slope using
this reconstruction. Indeed, this reconstruction can provide all relevant slopes needed by the discretization
stencil outlined in the preceding section – the wall slopes as well as gradients at cell centroids.

y1

y2
2

1
bcd

aaaa
b

c

d

a

y

U�dU

dy

�

w

Figure 4. Illustration of a quadratic interpolant through the cut cells on a non-aligned mesh.
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2. Near-Wall Quadratic Reconstruction for Low Cell Reynolds Numbers

As suggested above, it is a simple matter to fit a quadratic to three values, particularly since both the u and
v velocity is zero at the wall. Using the notation of Figure 4, we construct a line through cell 1’s centroid,
normal to the patch of the wall contained in cell 1. Cell 2 is the neighbor across the face intersected by
this normal. Its centroid is a distance y2 in the normal direction from the point 0 at the wall. Strictly
speaking, data in cell 2 should be recentered tangentially as well. However, since streamwise gradients in
high Reynolds number flows are generally several orders of magnitude smaller than wall-normal gradients,
the current implementation uses data at 2 directly.

The resulting formula is
U(y) = yA + y(y − y1)B (3)

with

A =
u1

y1
, and B =

u2−u1
y2−y1

−A

y2 − y0
(4)

U(y) can be differentiated in the wall normal direction giving

U �(y) = A + (2y − y1)B. (5)

This gives a slope at the wall of �
∂U

∂y

�

wall

≈ U �(0) = A− y1B (6)

The slope at the wall provides the wall shear stress for both viscous fluxes and output skin friction, after
rotating into the tangential direction. The quadratic also provides the u and v states for differencing at
the cut faces, needed for the shear stress. In addition, the gradient of the quadratic evaluated at the cell
centroid replaces the least-squares gradient previously computed, and is used in both inviscid and viscous
flux balances. The quadratic reconstruction is essentially compensating for the stencil irregularity near the
wall, and it is used both in the cut cells and also in the first layer of interior cells (cell 2 in Fig. 4). Although
these cells are full hexahedra, they also have boundary-dependent stencil irregularity since they are adjacent
to the cut cells. The use of quadratic reconstruction mitigates the mesh irregularity while maintaining strict
conservation.2

Of possible concern in using the quadratic to discretize wall shear is that it may adversely impact the
allowable time step. Appendix B contains a stability analysis for a model 1D heat equation to determine the
CFL limit for this quadratic boundary condition. Results using GKS stability analysis29 show that using
forward Euler in time and central differencing in space results in a CFL limit of 0.43. The standard scheme
using linear reconstructions is stable with a CFL limit of 0.5, so the impact on the timestep is minimal. Our
choice of time step at the cut cells is sufficiently conservative and this minor reduction is not an issue.

C. RANS equations

Compressible high Reynolds number turbulent flows are modeled using the Favre-averaged Navier-Stokes
equations (herein still referred to as the RANS equations). They are of the same form as (1) except for the
stresses, which are empirically modeled in turbulent flow. Here we use the Boussinesq assumption relating
the Reynolds stress tensor to known flow properties. The net effect of this is the addition of an eddy-viscosity
parameter µt and a turbulent Prandtl number Prt which we take to be 0.9, giving shear stresses

τxx =
2
3

(µ + µt)(2ux − vy)

τxy = (µ + µt)(uy + vx) = τyx (7)

τyy =
2
3

(µ + µt)(2vy − ux)

and turbulent heat flux ∇q = (µcp

Pr + µtcp

Prt
)∇T .

We model µt using the Spalart-Allmaras turbulence model30 in fully turbulent form (i.e. no transition or
tripping terms). We use what is referred to as the baseline model described in Oliver’s 2008 dissertation.31

2One area for potential improvement is that the quadratic is fit to the cell-averaged value as if it were the pointwise solution,
as is common for second-order finite volume schemes. Strictly speaking a higher order scheme should account for this, but this
error is small.
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Added to this are terms for the so-called negative model, which modifies some of the functional forms in the
production and destruction terms for negative values of ν̃ to help push the turbulent viscosity back to the
positive region.31,32

The resulting equation in the incompressible formulation is

∂

∂t
(ν̃) +

∂

∂xj
(uj ν̃) =

1
σ

�
(1 + cb2)

� ∂ν̃

∂xj

�2
+ (ν + ν̃f(χ))

∂2ν̃

∂x2
j

�
+ Production − Destruction (8)

where we made the usual assumption that ∂ν
∂xj

is small and can be neglected in rearranging the diffusion
terms as above. For this somewhat modified negative model we take

f(χ) =





1 χ > 0

1 + χ
2 otherwise

, Production =





cb1 Ŝ ν̃ χ > 0

cb1 Ω gn ν̃ otherwise
, (9)

with

Ŝ =





Ω + S̄ S̄ > −cv2 ω

Ω + Ω (c2
v2+cv3S̄)

(Ω (cv3−2cv2)−S̄)
otherwise

(10)

and S̄ = ν̃fv2
K2d2 , where Ω is the magnitude of vorticity. For the destruction term we have

Destruction =





cw1 fw( ν̃

d )2 χ ≥ 0

−cw1 ( ν̃
d )2 otherwise

(11)

with µt = ρν̃fv1 and the usual definitions of fw, g, r, χ, and the other constants.30
This negative model improves on and expands the robustness measures in the original and baseline

models.30,31 Oliver applied the negative model in a GMRES framework.31 In our multigrid context, we
found some of the modifications for negative ν̃ overly steep and reduced them somewhat while still following
the same design principles. Reducing them substantially improved the depth of convergence of our multigrid
smoother. We have not done extensive study in arriving at the final functional forms. All equations – Navier
Stokes plus turbulence model – are solved in a fully coupled manner as described in Section III.

One additional change was necessary that is not commonly discussed in the literature. The advective
terms in the turbulence model are usually implemented using a first-order scheme to help preserve positivity.
This was too diffusive on non-streamwise-aligned meshes. The first-order scheme was replaced by a second-
order method with linear reconstruction to discretize the advective terms.

The Spalart-Allmaras turbulence model uses the normal distance to the wall in the destruction term –
the d in (11) for each cell in the mesh. We use Sethian’s fast marching method33 to compute this additional
quantity. This is mostly standard, with only a few modifications needed for our multi-level cut-cell mesh.
This is incorporated into our mesh generator as a preprocessing step before computing the flow.

1. Cut-Cell Wall Model for High Cell Reynolds Numbers

One of the obvious challenges facing Cartesian methods for RANS simulations is the untenable cell counts
associated with resolving the viscous stresses all the way down to the wall. Subgrid wall modeling is based on
the fact that very near the wall, momentum transfer is governed by viscous stresses and the near wall flow is
distinct from the outer flow in which inertial forces dominate. Wall functions, which are essentially algebraic
wall models, are based on this observation. While wall-function development has been active34 since the
80’s, recent work has focused on extending them for numerical approaches using subgrid modeling for both
body-fitted18–20 and non-body-fitted grids.21,22 An advantage of these approaches is that the streamwise
flow gradients can be taken from the underlying grid cells, thus removing many of the restrictions of algebraic
wall models with built-in assumptions about the underlying flow conditions (zero pressure gradient, etc.)
These two-layer models can also couple more flexibly to the outer RANS flow. The the diffusion model of
Bond and Blottner23,35 is one example in which a system of ODEs is solved instead of assuming an analytic
form for the wall function. The issues then become deciding how far from the wall the coupling occurs and
which terms are retained in the equations that are solved in the wall layer.
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While our eventual goal is to develop a complete subgrid model, in this paper we first examine the issues
that arise when extending the use of wall functions to non-coordinate-aligned grids with cut cells at the wall.
We use a new wall model recently developed by Steven Allmaras. The derivation of the model is described
in Appendix C of this paper, written by Allmaras. We repeat the final equation here for convenience. (Note
that the ArcTan arguments are the reverse of the usual, see Appendix C).

u+(y+) = B̄ + c1 log((y+ + a1)2 + b2
1) − c2 log((y+ + a2)2 + b2

2)

− c3ArcTan(y+ + a1, b1) − c4ArcTan(y+ + a2,b2),
(12)

where the constants are given in the Appendix. Several other researchers16,36 have used Spalding’s composite
formula, an algebraic relation bridging the viscous sublayer and the log layer within a fully developed
turbulent boundary layer, as a wall function. For completeness we give Spalding’s formula here too,

y+(u+) = u+ + e−κB

�
eκu+ − 1− κu+ − 1

2
(κu+)2 − 1

6
(κu+)3

�
(13)
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Figure 5. Comparison of new SA wall model with
Spalding’s formula. Most of the difference is in the
transition region.

Equation (12) (henceforth called the SA wall
model) has the advantage over Spalding’s formula of
matching the profiles actually computed in the flow
field by the Spalart-Allmaras turbulence model. This
is seen in the computational examples of Section C,
where the computed profiles match the SA model
through the transition region. Figure 5 shows the
transition region, where the two formulas differ the
most. In this figure, Spalding’s formula was evaluated
using B = 5.033 in (13) to match the asymptotic be-
havior of the SA model, which produces this value for
the constant shift. Spalding’s formula simply bridges
this buffer zone with a functional form. Furthermore,
(12) is more computationally efficient since given y+,
u+ is explicitly evaluated rather than needing a non-
linear iteration as (13) does. (However Kalitzin et
al.18 have a nice approach that avoids iteration us-
ing pre-computed tables of inverses). By using a wall
model that actually matches the background flow we
can avoid the kinetic energy mismatch, described in
Sondak and Pletcher.37

2. Coupling

Since the model is given in wall coordinates (y+, u+), y+ = yuτ

ν , u+ = u
uτ

, an estimate of the friction velocity
uτ (a.k.a. ∂u

∂y |wall) is needed for each cut cell. Wall functions have a well-known sensitivity to the location
of the first point away from the wall,34 and this issue must be directly addressed for the wildly irregular cut
cells of an embedded-boundary mesh. Following Capizzano21 we regularize the distance by using points a
fixed distance h away from the wall instead of using the cut cell centroid.

We fit the one-dimensional model in (12) using the boundary condition of zero velocity on the wall and
the solution at a fixed point F (to use the same terminology21) located a distance h from the boundary in
the normal direction. Let the point F be in cell D; the approximate solution there is obtained using linear
reconstruction from D’s centroid. The velocity is then rotated into qtang, the tangential velocity, using the
directions defined by the portion of the boundary in cut cell C. A Newton iteration is used to find the friction
velocity uτ that transforms the point (h, qtang(F )) into (h+, q+

tang(F )) lying on the SA wall model curve (12).
Gradients of the model provide the viscous flux needed at the wall for the finite volume scheme. The model
also gives values of the tangential velocity needed to compute the difference at the cut faces (after rotating
back to Cartesian velocity components u and v). Finally, as with the quadratic we replace the cut-cell least
squares gradient with a model gradient (and set the tangential component to zero). This coupling strategy
makes use of the fact that the friction velocity is constant through the inner portion of the boundary layer.
The procedure is illustrated in Fig. 6.
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C d
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Figure 6. Illustration of construction for wall model coupling via constant height “forcing” points through the
centroids of the cut cells.

Currently we take the distance h = 1.5 × min(dx, dy). Since the cell sizes in the coordinate directions
are approximately equal, this distance is slightly larger than a diagonal in a two dimensional cell, and so
is sufficient to situate the point F out of the cut cell and into the neighboring cell. This procedure does
impose some restrictions on the mesh resolution, since the point F must lie in the logarithmic region of the
boundary layer to get valid estimates of the friction velocity. Eventually this could be used as a criteria for
adaptation, or alternatively the location of the point F could vary depending on the local flow conditions.

Section IV.C shows results of coordinate-aligned turbulent flat plate simulations with Reynolds number
ReL = 5 × 105 using both approaches – integrating down to the wall and using the wall model. The latter
needs substantially less resolution. We will also show a comparison to the more difficult case where the flat
plate is rotated with respect to the mesh. The wall model computation needs an extra level of refinement
in the non-coordinate-aligned case. These preliminary studies show savings commensurate with the savings
found in body-fitted grid implementations of wall models.19,38

III. Multigrid Acceleration and Time-Stepping

Our steady-state solution strategy uses an FAS multigrid method with a multi-stage Runge-Kutta
smoother applied on each multigrid level. It is common for viscous flows on highly anisotropic grids to
cause convergence problems for multigrid in getting to steady-state. However, since the Cartesian cells in
this work are essentially isotropic, appropriately strengthened multigrid operators should yield Navier-Stokes
performance on a par with our inviscid multigrid algorithm.25 In RANS simulations, the equation for the
turbulence model also needs time advancement until a steady state is reached. Since this equation has
stiff source terms that may restrain the rest of the system, we use a separate timestep for this equation
as described below. The system is solved fully coupled, with the Runge-Kutta smoother operating on all
equations, but using one timestep for the flow equations and another for the turbulence model.

A. Time-Stepping

We compute directional timesteps for the flow equations following the usual advection-diffusion model.

∆tx =
hx

|u| + c + Kv
hx

, ∆ty =
hy

|v| + c + Kv
hy

, (14)

where c is the local sound speed and

Kv = 2max
�4
3
(µ + µτ ), γ

µ + µτ

Pr

�
(15)

The timestep within the cell is a harmonic blend of the directional ∆t’s.

∆t =
∆tx∆ty

∆tx + ∆ty
(16)
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Following Pierce,39 the use of a separate timestep for the turbulence model in a fully coupled time-
advance scheme amounts to a diagonal timestep formulation, essentially applying a scalar preconditioning to
the turbulence model. The timestep for the SA working variable, ν̃, may be written concisely by replacing
Kν with KνSA

KνSA = 2(ν + |ν̃|)
�1 + Cb2

σ

�
(17)

where σ is 2/3. This results in the directional timesteps

∆tx =
hx

|u| + c
8 + KνSA

hx

, ∆ty =
hy

|v| + c
8 + KνSA

hy

. (18)

The factor c
8 is an ad-hoc inclusion for robustness that prevents the hyperbolic contribution from vanishing.39

The directional timesteps for the turbulence model are again blended via the harmonic mean in (16).
The source term (“Production - Destruction”) is treated implicitly by penalizing the timestep when its

Jacobian, Qν̃ , is negative.30,39

∆timp =
∆t

1−∆t min(0, Qν̃)
(19)

B. Second-Order Coarse Grid Operator

Inviscid multigrid solvers commonly use a first-order spatial differencing on coarser grids. This saves the
expense of computing gradients, since the coarse grid solution does not affect the final solution. Without
gradients, the only geometric information required is the area of the cut faces, the cell volumes, and the wall
normal vector in each coarse cell. By contrast, a second-order coarse operator needs solution gradients to
perform linear reconstruction to coarse grid cell faces. Near the wall, this requires the cut-cell centroids, cut-
face centroids, and surface (wall) centroids on the coarser grids. Most of this information is easily computed
from the fine grid and can be done concurrently with coarse mesh generation. For example, coarse grid cell
centroids are weighted averages of all the fine grid cells that restrict to that cell. One of the difficulties is
assigning the triangles associated with cut cells on the fine grid to the proper coarsened Cartesian cells.

Specifically, the most difficult part of the coarse grid generation is organizing split cells on-the-fly during
mesh coarsening. Split cells are cut Cartesian cells that are split into multiple control volumes by the
geometry. Figure 7 shows two interesting examples. Cut cells on the fine grid may agglomerate into split
cells on the coarse mesh (Fig. 7a). Alternatively, split cells on the fine grid can yield a cut (but unsplit) coarse
cell (Fig. 7b). Specific situations like these may be quite complex in three dimensions since they can involve
any number of control volumes. Nevertheless, all such cases can be resolved using a simple integer matching
algorithm. This algorithm scans for common triangles on sorted lists of intersected triangles maintained by
each cut cell, along with the face lists that connect cut cells with their neighbors. Since it is based on integer
comparisons of sorted lists, this matching procedure is very fast and robust.

(a) (b)

Figure 7. (a) Four fine cut cells that make one coarse split cell containing two control volumes. (b) A fine
split cell, a cut cell, and two full cells that make up one coarse cut (but not split) coarse cell.

C. Linear Prolongation Operator

The other major change in the multigrid algorithm is the formulation of the prolongation operation. Multigrid
theory shows that higher-order derivatives need better prolongation than the piecewise constant approach
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typical of inviscid flow with cell-centered schemes.40 Our restriction operator, a volume-weighted average of
the solution and residual on the fine grid, is already second-order, and a second order coarse grid discretization
was also implemented. With gradients now defined on the coarse levels it is easy to use a linear prolongation
to bring the change in the solution back to the finer levels. Two copies of the solution were already needed -
the initial restriction to the coarse grid and the modified solution after recursively smoothing on the coarser
levels. Thus, in addition to the computational expense, there is some minor additional memory overhead
from storing gradients on the coarser levels.
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Figure 8. Multigrid convergence for NACA 0012 with
M∞ = 0.5, and ReL = 5000 at zero angle of attack.
The figure compares the use of linear prolongation and
coarse grid gradients with piecewise constant prolon-
gation and no coarse gradients. Six levels of multigrid
were used.

Figure 8 compares convergence of the multigrid
scheme before and after improvement for the Navier-
Stokes equations (1). The black curve shows the orig-
inal formulation without coarse gradients and using
only piecewise constant prolongation. The blue curve
shows the improved operator using a second-order
coarse grid scheme combined with a linear prolonga-
tion operator. While this particular data is for the
laminar (ReL = 5000) flow over a NACA 0012 air-
foil at M∞ = 0.5 (presented in Section IV.B) the
improvement is characteristic of the scheme’s per-
formance. In this example, six levels of multigrid
were used with a W-cycle consisting of one pre- and
one post-sweep of a 5 stage Runge-Kutta smoother
on each level. With linear prolongation and coarse
grid gradients, the scheme remained stable with a
CFL number of about 1.4. In contrast, the unmodi-
fied scheme in Fig. 8 had a maximum stable Courant
number of only about 0.1. Note that the improved
convergence and stability required the combination
of both linear prolongation and the improved coarse
grid spatial scheme – using either alone was insufficient to improve multigrid performance. Figure 8 shows
that when used in combination we can achieve convergence behavior nearly on a par with that of the base
inviscid scheme previously reported.25
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Figure 9. Multigrid convergence for fully turbulent
flow over an RAE 2822 airfoil at M∞ = 0.676 and
Reynolds number 5.7 × 106 (see Section IV.D) using
a five level multigrid W-cycle.

Finally, Fig. 9 shows multigrid convergence be-
havior of a fully turbulent RANS example with the
Spalart-Allmaras turbulence model. The fully cou-
pled time advance is using the diagonal timestep de-
scribed earlier in combination with the second-order
coarse discretization and linear prolongation opera-
tor. The case shown corresponds to the M∞ = 0.676
fully turbulent flow over an RAE 2822 airfoil at a
Reynolds number of 5.7 × 106 presented in Section
IV.D (medium mesh, AGARD Case 1) computed
with 5 levels of multigrid. Cells at the wall are
about three times finer than in the NACA exam-
ple of Fig. 8. While the additional stiffness intro-
duced by the turbulence model has clearly impacted
convergence, the scheme is still delivering roughly 9
orders-of-magnitude reduction in the L1 norm of mo-
mentum in under 1000 (fine-grid) multigrid cycles
for both the flow and turbulence model. This cor-
responds to a multigrid convergence rate of about
0.98. While this is noticeably slower than the rate of
roughly 0.92 shown in laminar case (Fig. 8), it is still
fast enough to support our numerical investigations. With approximately 115,000 cells in the mesh, this
example took about 5 minutes on a current generation desktop computer. The literature on block-Jacobi
preconditioning and matrix time-stepping offers many suggestions for further improvement of these results.
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IV. Computational Examples

In this early investigation, computational results are principally confined to verification and validation
exercises. Our goal is to investigate the accuracy of the viscous discretization operator on cut-cell Cartesian
meshes and examine fundamental issues surrounding stencil irregularity, wall modeling and resolution re-
quirements. We do not focus on performance, since we have not yet seriously begun to attack the cell count
or meshing efficiency issues.

A. Laminar Flat Plate Boundary Layer

The first test is a two-dimensional flat plate boundary layer for M∞ = 0.5 and ReL = 5000. As in Section
II the plate is oriented 15◦ to the mesh. The plate starts at x = 0 in a domain with x spanning -9 to 20 and
y from -3 to 30. As discussed in Section II.2, these laminar computations all used quadratic reconstruction
in the wall-normal direction to obtain the necessary derivatives in the cut cells.

Figure 10 shows a sketch of the problem setup (top left) along with profiles of both tangential and normal
velocity which were extracted from solutions with and without limiting. The velocity profiles are taken at
3 stations corresponding to Rex = 5000, 10000, and 50000 along the plate, plotted in similarity coordinates.
As expected, the tangential velocity profiles collapse on each other in these variables. The normal velocity
profiles show some effects of the plate leading edge and the mesh resolution. The calculation on the left did
not use limiters, and shows some viscous overshoot at the first two stations. Velocity profiles on the right
used the van Leer limiter and have no viscous overshoot. Limiters can help control the overshoot, but the
extra dissipation can adversely affect skin friction. These calculations used the HLLC Riemann solver,41
with wave speeds from Batten et al.,42 since this is less dissipative than the van Leer flux function.

Isotropic Cartesian cells were used with a cell size at the wall of h = 5.9×10−3, giving approximately 13,
17, and 40 cells in the boundary layer at the three stations respectively. These resolution requirements are
similar to standard second-order finite volume codes.43 Note that since the profiles are taken in the direction
normal to the wall and not a coordinate direction, each profile intersects both x and y grid lines along the
way, so the number of symbols does not correspond to the number of cells.
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Figure 10. Three profiles at Rex = 5K, 10K and 50K from the flat plate boundary layer for M∞ = 0.5, ReL = 5000.
The plate is rotated 15◦ to the mesh, shown on the left. In the middle figures, the profiles were not limited;
on the right the van Leer limiter was used.
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Figure 11. Skin friction for flat plate at 15o to the mesh using the quadratic is well predicted by Rex = 100.

Figure 11 shows the skin friction distribution from the unlimited computation for this case, discussed
in detail in Section II. Cf is well predicted by Rex = 100, and compares nicely with coordinate-aligned
results.43 Note the smooth Cf distribution provided by the quadratic wall-normal reconstruction.

B. NACA 0012

The next test is laminar flow about a NACA 0012, also at M∞ = 0.5, Reynolds number 5000, and zero
angle of attack. Unlike the flat plate, in this case the stencil of the quadratic used in each cut cell is not in a
fixed direction but rotates around the airfoil. The results are stable regardless of the direction of the stencil.
Figure 12 shows an overview of the discrete solution along with some examples of the quadratic’s stencil near
the leading and trailing edges. What sometimes appears to be 3 connected points in the stencil are really 2
stencils of 2 points each for adjacent cut cells. Figure 12b shows the velocity magnitude, computed on a grid
with leading edge resolution of 0.0016c obtained with 10 levels of refinement along the airfoil. Figures 13a
and b show the pressure and skin friction coefficients around the body. Again, the skin friction is smooth
along the airfoil. Separation here occurs at x = 0.816, very close to the mesh converged values found in the
literature.43

M!  = 0.5

ReL = 5000

NACA 0012
Leading edge

Trailing edge

(a) (b)

Figure 12. (a) Cells used in quadratic stencil for computing wall fluxes for NACA0012 example. (b) Velocity
magnitude.
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Figure 13. Cp (left) and Cf (right) for the results in Fig. 12b for flow around a NACA 0012.

C. Turbulent Flat Plate

While turbulent boundary layers are thicker than laminar boundary layers, the higher wall shear stress creates
a greater demand for resolution near the wall. In this example we use the RANS equations to simulate a flat
plate with free stream Mach number 0.5 and fully turbulent flow at ReL = 5 × 105. We will first compare
wall treatments with and without the wall model for a plate that is coordinate-aligned. We then compare
the use of the wall model in the aligned case with that of a plate angled at 15◦ to the mesh. All cases uses
the Spalart-Allmaras turbulence model; the cases with the wall model use the SA wall model.

The baseline case of integrating the governing equations down to the wall using 13 levels of refinement
is shown in Fig. 14. The tangential profiles (left) are taken from 4 stations along the plate. They are all
well-resolved and show no viscous overshoot. We also compare the velocity profile at x = 10 corresponding
to Rex = 5× 106 in plus coordinates with the SA wall model (middle). With an initial cell with centroid at
y+ = 8.8 the results match well, and are virtually identical to 14 level results (not shown). Skin friction is
shown on the right, compared to the asymptotic formula for a flat plate with zero pressure gradient taken
from White.44 The solution is not noisy, since the wall is aligned with the mesh and all cell centroids are
the same distance from the wall. After 13 levels of refinement at the wall, the Cartesian cells have a mesh
spacing of h = 3.6× 10−4.

The computational results using the SA wall model are shown in Fig. 15. The figure compares wall
model results in both the aligned and non-aligned case. With the wall model, accurate results are achieved
on an aligned mesh with only 10 levels of refinement. No attempt has yet been made to refine the mesh in
a solution-adaptive manner; it is only refined next to the flat plate. Nevertheless we can report that our
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Figure 14. Coordinate-aligned turbulent flat plate with ReL = 5×105, M∞ = 0.5. Left figure shows well resolved
profiles with no viscous overshoot. Calculations were done integrating down to the wall using the quadratic
on a 13 level mesh. Middle figure shows the velocity profile at Rex = 5 × 106 plotted in wall coordinates and
compared to the SA formula for a zero pressure gradient flat plate. For this profile the first cut-cell centroid
corresponds to y+ ≈ 8.8. Right figure shows skin friction compared with asymptotic formula from White.44
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non-optimized 13 level mesh had 1.6M cells, and the 10 level mesh had 180K cells.
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Figure 15. Non-aligned turbulent flat plate using the wall
model on an 11 level mesh, compared with the aligned
cases, using both the wall model and the quadratic.

The computation is much more difficult on the
non-aligned plate, since the difference scheme for
the cut cells degenerates to first-order. Results on
the flat plate oriented at 15◦ to the mesh needed
one finer level of mesh refinement. In addition
to the two results with the wall model, Fig. 15
also includes the results of integrating down to
the wall. The aligned 13 level result integrat-
ing to the wall (y+ = 8.8), the aligned 10 level
wall model calculation (y+ ≈ 70), and the non-
aligned 11 level results (y+ ≈ 35) all agree quite
well for small y+. In the wake region the over-
shoots in the solution clearly show the effect of
the larger truncation error when the streamwise
direction is not aligned with a coordinate direc-
tion. Additional mesh refinement would certainly
help in this region of high curvature around the
knee of the profile. Alternatively, future research
can try to improve the accuracy of the discretiza-
tion to fourth-order, an especially attractive idea
on Cartesian meshes. (Note that the first point in
the plot of y+ versus u+ is taken from the forcing
point F, and so does not necessarily correspond
to the finest mesh spacing reported at the wall.)

D. RAE Airfoil

Figure 16. Mach contours of flow around RAE 2822
airfoil at AGARD Case 1 conditions. M∞ = 0.676, ReL =
5.7 × 106 and CL = 0.566 (α = 1.85◦) using the SA wall
model.

To assess performance and resolution requirements
of the numerical scheme and wall model for high-
Reynolds number turbulent flows, we consider three
cases using the RAE 2822 airfoil. We present mesh
convergence studies on a sequence of three meshes
for AGARD Cases 1, 6 and 10.45 The coarse mesh
in this sequence has a wall spacing of 0.1% of the
airfoil chord, c, and a total of about 50K cells. For
these cases, this wall spacing gives values of y+

over the airfoil largely in the range 200–350. The
medium mesh has a wall spacing of 0.05%c and a
total of ∼115K cells with y+ of 100–170. The fine

mesh has a wall spacing of 0.025%c and ∼150K cells
with y+ values largely between 50 and 80. The
medium and fine grids were constructed by subdi-
vision of the near-wall cells of the coarse mesh, thus
the three grids are nesting, The domain extends a
distance 30c from the airfoil. The simulation had
no circulation correction, and all simulations are
fully turbulent.

1. AGARD Case 1

AGARD Case 145 is a subcritical flow at M∞ = 0.676 and a Reynolds number of Rec = 5.7× 106. In wind
tunnel experiments, the target lift coefficient of CL = 0.566 was achieved at an uncorrected α = 2.4◦. Most
simulations however match this value with about half a degree less incidence angle.46

Figure 16 illustrates this flow through Mach contours on the fine mesh. The simulation matched the
experimental value of lift at α = 1.85◦. Subsequent simulations on the coarse and medium meshes were run
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Figure 17. Surface pressure coefficient and skin friction on RAE 2822 airfoil for AGARD Case 1 conditions
using the SA wall model on coarse, medium and fine meshes with experimental data from Cook et al.45

at the same incidence angle. Figure 17 displays the surface pressure coefficient and skin friction distribution
for all three meshes, and contains the experimental data for comparison. Agreement between simulation and
experiment is on a par with other published solutions.46 Simulation data from three meshes makes it possible
to evaluate the level of mesh convergence. The pressure distribution (Fig. 17 left) nicely captures the suction
peak, the rooftop region and the characteristic “duck-tail” in the highly-loaded aft-portion of this airfoil.
Overall, the pressures are remarkably invariant with mesh resolution, indicating that these pressures are
essentially mesh converged even on the coarsest grid. Since the aft recovery region depends upon prediction
of the displacement thickness, it is worth noting that even the coarsest mesh seems to accurately capture
this feature despite local y+ values of approximately 200 on this grid.

Since it is a derivative quantity, prediction of skin friction is more challenging (Fig. 17 right). The
experimental drag was measured at 85 counts. The drag values from the simulations are a bit higher, with
CD = {0.0099, 0.0097, 0.0099} on the coarse, medium and fine meshes respectively. Despite similarities in the
skin friction distributions and the consistency in the integrated drag, there are significant differences between
the profiles. At the trailing edge, where the boundary layer is the thickest, local values on the three meshes
are in good agreement with both each other and experimental data. Moving upstream from the trailing
edge, differences become apparent. As the boundary layer thins, the coarse mesh results start to differ. The
fine and medium meshes agree over most of the surface, however upstream of about 30%c, even the medium
mesh appears to be insufficient as it starts to differ from both the fine mesh solution and the experimental
data. Near the leading edge, only the fine mesh remains credible and shows good agreement with the data
upstream of 20% chord. As in the experimental dataset, skin friction data in this figure was normalized
using the dynamic pressure at the outer-edge of the boundary layer to facilitate direct comparison.

2. AGARD Cases 6 & 10

The final two examples consider supercritical flow over the same RAE 2822 airfoil section. They are charac-
terized by increasingly strong shock-boundary layer interactions. AGARD Case 6 was tested at M∞ = 0.725,
Rec = 6.5× 106 and produced a measured lift coefficient of CL = 0.743 with an uncorrected incidence angle
of α = 2.92◦. Case 10 was tested at the same lift coefficient, but under somewhat more aggressive conditions:
M∞ = 0.750 and Rec = 6.2 × 106. CL = 0.743 was measured at an uncorrected incidence of α = 3.19◦.45
Over the past 30 years, these two cases have been the subject of countless numerical experiments. As in
Case 1, most numerical simulations achieve the experimental values of lift with around half a degree less
than the experimentally reported incidence angle.46

Figure 18 illustrates these two flows through isoclines of Mach number with case 6 on the left and case 10
on the right. The fine mesh simulation data of Case 6 matched the experimental lift coefficient of CL = 0.743
at α = 2.44◦ while the Case 10 data matched this same value at α = 2.54◦. As before, simulations on all
meshes were performed using these values. Despite identical lift coefficients, the higher Mach number in the
Case 10 flow produces a stronger shock which is shifted noticeably aft.

Figure 19 contains a comparison of surface pressure distributions for these two transonic cases. Agreement
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Figure 18. Mach contours of flow around RAE 2822 airfoil at AGARD Case 6 (left) and Case 10 (right)
conditions using the SA wall model on the fine mesh. Case 6: M∞ = 0.725, Rec = 6.5 × 106 @ CL = 0.743
(α = 2.44◦). Case 10: M∞ = 0.750, Rec = 6.2× 106 @ CL = 0.743 (α = 2.54◦).

with the experimental data is comparable to others in the literature.30,46,47 In Case 6, the computed pressures
on the lee side do not dip as much following the suction peak as the experimental data, and consequently
the shock is slightly forward to yield the same lift coefficient. In Case 10, the numerical solution places the
shock slightly farther aft than in the experiment, and shows small discrepancies in the aft loading. Similar
differences have been noted by numerous authors.30,46,47 As in the earlier subcritical example, both of these
cases show little variation of the pressure distribution as the mesh is refined, and even the coarse mesh with
a wall spacing of 0.1%c and only 50K cells seems sufficient to produce mesh-converged pressures. The shock
position in both of these examples is critically dependent on the displacement effect of the boundary layer
and the shock-boundary layer interaction, and the performance of the coarse mesh is noteworthy in this
regard.

Figure 20 displays the the evolution of Cf for both Case 6 and Case 10 as the mesh is refined. The profiles
display similar behavior to that discussed in the earlier subcritical example (Fig. 17). Integrated drag on
the fine mesh was 133 counts which compares well with the experimental value of 127 counts.45 As before,
agreement is strongest where the boundary layer is the thickest. Tracing upstream from the trailing edge
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Figure 19. Surface pressure coefficients on RAE 2822 airfoil at AGARD Case 6 (left) and Case 10 (right)
conditions using the SA wall model on coarse, medium and fine meshes with comparison to experimental data
from Cook et al.45.
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Figure 20. Skin friction distributions on RAE 2822 airfoil at AGARD Case 6 (left) and Case 10 (right)
conditions using the SA wall model on coarse, medium and fine meshes with comparison to experimental data
from Cook et al.45.

reveals that the coarse mesh starts to differ at about 80%c. The medium mesh shows discrepancy upstream
of 30%c, and only the finest mesh accurately predicts the experimental data near the leading edge where the
boundary layer is the thinnest. This case is characterized by the strong shock-boundary layer interaction on
the suction side. While results in the literature are mixed, many authors report a small recirculation bubble
following this shock.46 The present simulations are showing very small but positive values of skin friction,
indicating only incipient separation. Detailed investigation of the analytic wall model’s behavior near the
shock-boundary layer interaction remains an important topic of investigation.

V. Conclusions

In this paper we outlined initial development of a method for solution of the Reynolds Averaged Navier-
Stokes equations on embedded-boundary Cartesian meshes using a wall model in the cut cells. First we
developed accurate discretizations based on recentering for use in the highly irregular cut cells. We also
introduced an analytic wall model for turbulent flow simulations based on a limiting solution of the Spalart-
Allmaras turbulence model which provides accurate representation of attached flows in the laminar sub-
layer, buffer and log-layer regions of the boundary layer. This model has distinct advantages over standard
Spalding-based wall functions in that it automatically matches the turbulence model used away from the
wall. Additionally, it entails an explicit evaluation for the velocities as a function of distance and does not
require an iterative solution. We use an enhanced multigrid algorithm that includes geometry and gradients
on coarser grids to achieve multigrid convergence nearly as good as in the inviscid case. Finally, we showed
that the resulting scheme can provide accurate pressure distributions for high Reynolds number flow over
subsonic and transonic airfoils with wall spacings of about 0.1%c, even when the pressure distribution is
strongly dependent on the displacement of the boundary layer. Drag values for attached flows are reasonable
at this same resolution, but detailed skin friction distributions require at least one or two additional cell
refinements.

Resolution requirements of the current method are driven by the assumptions underlying the analytic
wall model. The new SA wall model, like a Spalding-based wall function, is still based on a simple diffusion
model of the near-wall flow and so it cannot accurately predict values outside the log layer. Both the non-
aligned turbulent flat plate and 2D airfoil examples showed that accurate local skin friction values required
resolution to the log layer. This is currently the limiting factor in determining the lowest feasible Cartesian
mesh resolution. This provides strong motivation for work towards a more comprehensive PDE-based wall
model which retains more physics from the governing equations.

The present results are an important first step, but clearly a long list of questions remain. Our immediate
goal is development of a more complete, non-analytic wall model which includes streamwise momentum
and pressure gradient terms that become important outside the log layer and in separated flows. Robust
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convergence and coupling of such a model with the underlying Cartesian method is likely to be another
challenge. A successful three-dimensional implementation will clearly depend on the wall model to mitigate
the resolution requirements that would lead to untenable cell counts. Nevertheless, the simplicity and
automation of Cartesian mesh generation continue to provide persuasive motivation for further algorithmic
development.

Appendix A: Numerical Discretizations of Second Derivatives at Cut Cells

Neum
ann

Neumann

N
eu
m
an
n

D
irichlet

φ(x, y) = sin(x)× exp(y)

Figure 21. Domain for elliptic model problem in
Table 1.

The development of an accurate discretization for
the Navier-Stokes equations in a finite volume context is
much more delicate than for the inviscid equations. Two
new stencils need to be developed to compute second-
derivative terms at embedded boundaries – one at the
cut faces between cut cells, and the other to compute the
cut-cell boundary conditions at a solid wall. We consider
three possible discretizations for an elliptic equation to
evaluate their accuracy on a problem with an analytic so-
lution, chosen because they are nominally second-order,
conservative and can be implemented in a finite volume
framework. These tests do not rely on special properties
of elliptic equations.

Consider the model Poisson equation in two dimen-
sions

∇2φ = f (20)

with exact solution φ(x, y) = sin(x) exp(y). The domain is a quadrilateral with three non-coordinate-aligned
sides, as shown in Fig. 21. Three of the four sides use Neumann boundary conditions, with Dirichlet on the
fourth.This is in contrast to the Euler equations, where only the value of the solution itself is needed at the
cell edge. At interior cells, the standard central difference approximation for the first derivative, resulting in
the second-order accurate 5-point Laplacian is used. Three alternatives are tested for the cut cells.

Recentering: The first method uses a “recentering” idea48,49 illustrated in Fig. 22a. Recentering
operates on the integral cell average, which for a second-order finite volume scheme can also be used for
the pointwise value of the state vector at the cell centroid. Within each cut cell, a least squares gradient is
reconstructed using the solution from each cell’s stencil of face neighbors. The gradient is used to reconstruct
the solution from the cut-cell centroid to a line normal to the face through the face centroid (see Fig. 22a).
This is done on both sides of a cut face, so that the derivative can be approximated by a simple difference
in the face normal direction. Using the notation of Fig. 22a, with cell centroids at A and C, we recenter to
locations B and D, defining

φx =
φB − φD

xB − xD
(21)

=
(φA +∇φA · dBA)− (φC +∇φC · dDC)

xB − xD

where dBA is the vector from A to B, and similarly for dDC . Note that this divided difference is nominally
first order accurate, since it is not centered about the face centroid. Changing the recentering step to use
locations that are equally spaced about the face centroid, so that a centered difference approximation can
be used, is no more accurate than the one-sided scheme without using a more accurate reconstruction, so we
do not include those results here.

Johansen-Colella: The second discretization uses the Johansen-Colella framework.50 In this approach
the solution φ is thought of as being located in the center of the original uncut cell, not at the cut-cell
centroid. First derivatives are then easily computed at the midpoint of the uncut face. The flux however
is needed at the cut-face centroid, illustrated in Fig. 22b at the point P. This is easily obtained by linear
interpolation along the edge.
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(a) Recentering: The solution is
reconstructed from cell centroids (A
and C) to new points in each cell (B
and D) on the line perpendicular to
the midpoint of the cut-cell edge. A
simple difference (B-D)/∆x approxi-
mates the derivative.

2

43

1

P

!  21

!  43

(b) Johansen-Colella: The solu-
tion is considered to be located in
the center of the uncut cell. The flux
at the centroid of the cut face, P, is
linearly interpolated from the uncut
fluxes (�21 and �43 ) .

2

43

1

P

65

(c) Polynomial Fit: A least
squares polynomial that is linear in
x and quadratic in y is fit using 6
neighboring values. The polynomial
is differentiated and evaluated at the
point P to approximate the flux.

Figure 22. Three methods for computing the derivative at a cut-cell edge.

Polynomial Fit: The third discretization is similar to the method described in Ye et al.51 At each
face, a least-squares polynomial that is linear in the face normal direction (e.g. the x direction for an x
face) and quadratic in the transverse direction (e.g. y direction for an x face) can be constructed using 6
neighboring centroidal values. As illustrated in Fig. 22c, we use the solution to the left and right of the face,
the boundary values in those cells, and the values one cell further away. The polynomial is differentiated
and evaluated at the cut-face centroid to obtain the flux.

In all three methods the wall flux was computed using the same discretization (modulo the location of
the variables). In finite volume form the flux at the wall (∂φ/∂n) is needed. For the sides with Neumann
boundary conditions this becomes an evaluation of the boundary condition. On the Dirichlet side we use
a one-sided discretization, taking the cell average, subtracting the Dirichlet boundary condition evaluated
at the point normal to the centroid (or cell center, in the case of Johansen-Colella), and dividing by the
distance between them.

Recentering Johanson-Colella Polynomial fit

Size 1 norm max norm 1 norm max norm 1 norm maxnorm

9 × 9 38.53 1.47 24.64 1.39 46.93 4.76

18 × 18 10.10 .40 7.18 .48 10.66 1.44

conv. rate 3.8 3.7 3.4 2.9 4.4 3.3

36 × 36 2.60 .11 1.81 .12 2.64 .60

conv.rate 3.9 3.6 4.0 4.0 4.0 2.4

72 × 72 .66 .03 .45 .03 .65 .13

conv.rate 3.9 3.7 4.02 4.0 4.0 4.6

Table 1. Results of solving the Poisson equation ∇2φ = f on an irregular domain using 3 different discretizations
for the cut cells. Data corresponds to Fig. 23.

Figure 23 and Table 1 report the error in computing the solution to (20). Results include both the
maximum norm of the error, ||e||∞ = maxij |φexactij − φcomputedij

|, and the L1 norm of the error, ||e||1 =�
ij Aij |φexactij −φcomputedij

|, where the Aij are the cell areas. (Note that the L1 error is not normalized by
the domain size, so it is larger than the maximum norm errors.) All methods show second-order convergence
in the L1 norm. The convergence is not entirely smooth, since cut cells do not have a smooth asymptotic
expansion for the error.
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Figure 23. Convergence of 3 methods for comput-
ing cut-cell fluxes for the model Poisson problem
∇2φ = f , corresponding to data in Table 1.

We observe that the Johansen-Colella scheme has
slightly better L1 performance, and that the polyno-
mial fit is somewhat less accurate (especially in the more
finicky maximum norm). This conclusion is representa-
tive of a variety of test cases we ran. Since the accuracy
of the recentering approach and Johansen-Colella is sim-
ilar, and the former fits better into our existing finite vol-
ume cut-cell framework, the recentering approach was
chosen for implementation of the Navier-Stokes equa-
tions. These results come with a caveat, and need to
be interpreted carefully. There are terms in the Navier-
Stokes equations that are not included in this model
problem. In practical settings, these remaining terms
can dominate the error, and lead to non-convergence if
not handled carefully. In addition, we are not looking
at positivity of the stencil, which has been the focus of
several other studies.1,5 Although positivity ensures a
maximum principle, blindly insisting on it may rule out
potentially useful discretizations.3

Appendix B: Stability of Quadratic Boundary Condition

This analysis examines the effect on the allowable time step of using a quadratic instead of a linear
interpolant to discretize the boundary condition for a model problem. We will use GKS theory29 and
consider the heat equation ut = uxx on [0,1], with u(0) = u(1) = 0. Using forward Euler in time and central
differencing in space gives un+1

j = un
j + ∆t

h ((uj+1−uj)/h− (uj −uj−1)/h), where the flux term is written in
finite volume form. The boundary condition u(x = 0) = 0 is usually implemented as .5(u1 + u0) = 0 where
u0 is a ghost cell. A simple calculation shows that this boundary conditions does not reduce the stability
limit λ = ∆t/h2 = .5 of the initial value problem.

Using divided difference notation and the Newton form52 of the polynomial, the quadratic interpolant of
the three values ub, u1 and u2 can be written

p2(x) = [ub] + [ub, u1]x + [ub, u1, u2]x (x− x1)

where we have written ub to explicitly represent the boundary value at x = 0 even though it is zero. The
left flux at the first cell will be discretized using p�2 at the left cell edge, p2

�(0) = (−u2 + 9u1)/3h so that the
equation for the update of u1 is

un+1
1 = un

1 +
∆t

h
((u2 − u1)/h− p�2) (22)

It is sufficient to consider the stability of the left half plane problem, and look for solutions of the form
un

j = κjzn. Substituting this into the difference schemes gives the characteristic equation

z = 1 + λ(κ− 2 + 1/κ) (23)

where we are interested in solutions with κ ≤ 1. The characteristic equation for the boundary condition (22)
is

z = 1 +
λ

3
(4κ− 12). (24)

Equating (23) and (24) gives an l2 solution κ = 3− 2
√

3.
Substituting this root into (24) and solving for z ≤ 1 gives λ <

√
3/4 ≈ .43. This is only a small

reduction in the stability limit for this model heat equation. Since viscous terms in the Navier-Stokes
3For example, the 4th-order Laplacian derived using Richardson extrapolation by combining the 3-point h-sized stencil and

the 2h stencil has negative coefficients on the points 2h away from the center yet is symmetric positive definite.
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equations only reduce the allowable time step by a small fraction, the impact on the time step in practice
would be correspondingly less.

Appendix C: Analytic Law of the Wall Solution

for the Spalart-Allmaras Turbulence Model

by Steven R. Allmaras

We make the usual assumptions for law of the wall analysis: incompressible, zero pressure gradient,
constant outer (edge) velocity, advection terms are negligible and ∂/∂x� ∂/∂y, where x is streamwise and
y normal to the wall. With these assumptions, u = u(y) and ν̃ = ν̃(y), and the x-momentum equation
reduces to a statement of constant total shear stress,

d

dy

�
(ν + νt)

du

dy

�
= 0, → (ν + νt)

du

dy
= const = u2

τ , (25)

where uτ is the wall shear stress velocity. With these same assumptions, Spalart-Allmaras (SA) reduces to,

1
σ

d

dy

�
(ν + ν̃)

dν̃

dy

�
+

cb2

σ

�
dν̃

dy

�2

+ cb1 (1− ft2) �Sν̃ −
�
cw1fw −

cb1

κ2
ft2

� �
ν̃

y

�2

= 0, (26)

where
νt = ν̃ fv1, fv1 =

χ3

χ3 + c3
v1

, χ ≡ ν̃

ν
, (27)

and
�S =

du

dy
+

ν̃

κ2y2
fv2, fv2 = 1− χ

1 + χfv1
, ft2 = ct3 exp

�
−ct4χ

2
�
. (28)

By construction, these equations have the simple solution,

ν̃ = κuτy, �S =
uτ

κy
(29)

Transforming to wall units, y+ ≡ yuτ/ν, u+ ≡ u/uτ , this solution becomes,

χ = κy+, �S+ =
ν

u2
τ

�S =
1

κy+
. (30)

This solution is the extension of well known log-law behavior to the entire inner layer from the wall through
the viscous sublayer and into the log-law region. In the log layer, Reynolds’ stresses dominate molecular
stresses. With the introduction of the Boussinesq approximation and the log-law velocity distribution, both
velocity gradient and eddy viscosity can be determined,

νt

ν
= κy+,

du+

dy+
=

1
κy+

, y+ � 1. (31)

In developing the near-wall or viscous sublayer components of SA, this simple behavior was retained for the
new solution variable ν̃ and the modified vorticity �S by introducing the eddy viscosity correlation function
fv1, the definition of modified vorticity (via fv2) and the re-definition of r (not shown). Note that the presence
of the laminar suppression term, ft2, in SA is passive with respect to the simple solution; contributions from
production and wall destruction cancel in (26).

Substituting the simple solution (30) into either x-momentum or the definition for �S then gives,

du+

dy+
=

c3
v1 + (κy+)3

c3
v1 + (κy+)3(1 + κy+)

(32)
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This equation can be integrated (via Mathematica53) and the constant of integration determined from the
no-slip boundary condition u(0) = 0. Using complex arithmetic, the solution is,

u+(y+) =
4�

i=1

c3
v1 + z3

i

κz2
i (3 + 4zi)

�
log

�
κy+ − zi

�
− log (−zi)

�
, (33)

where zi are the four solutions to the quartic equation,

c3
v1 + z3

i + z4
i = 0 (34)

The solution can be simplified and rewritten using real arithmetic,

u+(y+) = B + c1 log
�
(y+ + a1)2 + b2

1

�
− c2 log

�
(y+ + a2)2 + b2

2

�

− c3ArcTan[y+ + a1, b1]− c4ArcTan[y+ + a2, b2], (35)

where ArcTan[x, y] is the Mathematica function equivalent to the Fortran function atan2(y, x). For the
values of κ = 0.41 and cv1 = 7.1, the constants are given by,

B = 5.0333908790505579
a1 = 8.148221580024245 b1 = 7.4600876082527945
a2 = −6.9287093849022945 b2 = 7.468145790401841
c1 = 2.5496773539754747 c2 = 1.3301651588535228
c3 = 3.599459109332379 c4 = 3.6397531868684494

Analysis of this solution for large y+ reveals that SA asymptotically produces a log-law with a shifted origin
compared to the conventional formulas,

u+ ∼ 1
κ

log
�
y+ + 1/κ

�
+ B,

du+

dy+
∼ 1

κy+ + 1
, as y+ →∞. (36)

The shift in the asymptotic gradient can also be derived from (32). The origin shift is minor, but is easily
noticeable in law of the wall velocity plots.

Figure 24 shows the law of the wall velocity profile for SA (35) compared to its asymptotic form (36) and
to Spalding’s composite formula,

y+ = u+ + exp(−κB)
�
exp(κu+)− 1− κu+ − 1

2
(κu+)2 − 1

6
(κu+)3

�
. (37)

Here the values of κ = 0.41 and B = 5 have been plotted; this value of B is consistent with the calibration
of SA (and in particular cv1 = 7.1). SA differs from Spalding by about 3.4% at y+ = 50.
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Figure 24. Law of the Wall velocity profile
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